



Copyright © 2010 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company.



### Agenda

- Effect of Oxygen on whisker surface
- Need for Compressive stress
- Inter-granular transport of Sn
- Inhibition mechanism of Pb
- Promotion mechanism by Zn, Cu and Mn
- Summary and conclusions

#### Raytheon

### **Engineering use of models**



Atomistic modeling provides inputs for FEA ad CFD



### The (1 0 0 ) model



### Surface oxygen puts whisker in tension



#### Raytheon

### **I**<sub>1</sub>,The first invariant



(GPa)

$$\begin{bmatrix} -1.570 & 0 & 0 \\ 0 & -0.004 & 0 \\ 0 & 0 & -0.941 \end{bmatrix}$$

|            | К     | E       | G     |         |
|------------|-------|---------|-------|---------|
|            | Bulk  | Young's | Shear |         |
|            | (GPa) | (GPa)   | (GPa) |         |
| MedeA      | 14    | 20      | 25    | (1 0 0) |
| MedeA      | 50    | 55      | 21    | β Sn    |
| Literature | 53    | 53      | 19    | β Sn    |

$$I_1 = a_{11} + a_{22} + a_{33}$$
$$I_1 = -1.570 + -0.004 + -0.941 = -2.515$$

System I<sub>1</sub>

|                    |            | ()    |
|--------------------|------------|-------|
| Sn <sub>12</sub>   | (100)      | -0.11 |
| Sn <sub>12</sub> C | 04 (1 0 0) | -2.52 |

The first invariant, I<sub>1</sub>,of the stress tensor describes expansion & contraction under hydrostatic loads

# Whisker growth is marginal for stress relaxation compared to *plastic creep*



#### Pure tin strain rate vs Stress

#### Plastic creep often occurs faster than whisker growth

Kavtheon

### The compressive stress paradox

- Local topographic features at whisker base generally do not change as the whisker grows
  - Suggests local compressive stress are not relieved by transferring local material into whisker.
- Hillocks form quickly, sufficient to reduce compressive stress
  - Boettinger, et al 2005
- Material in whiskers comes from the entire volume of tin
  - isotope studies by Woodrow 2006, 2009
- Creep rate of pure Tin is rapid with respect to whisker growth
  - Boettinger, et al 2005, Chalmers 1936, 1937
- Micro beam x-ray data showing compressive stress is relative to stress state of whisker.
  - Choi et al 2002
- Manganese alloys grow whiskers while in tension & continue to grow with out intergranular contact
  - Chen et al 2005



### Agenda

- Effect of Oxygen on whisker surface
- Need for Compressive stress
- Inter-granular transport of Sn
- Inhibition mechanism of Pb
- Promotion mechanism by Zn, Cu and Mn
- Summary and conclusions



### Diffusion

- Woodrow showed us:
  - Tin transport between grains is fast
  - Whisker contains tin from a very large volume of basal tin
  - -2% (m/m) Pb does not seem to inhibit diffusion
- To get insight into Pb inhibition mechanism
  - Model diffusion of Sn on Sn and Pb surfaces
  - Model stability of Sn at & near Pb surface
  - Model stability of Pb at & near Sn surface
  - Model lone Sn atom at boundary between Pb & Sn surfaces
- These results lead to other models..... be patient....





### Sn diffusion on Pb (111)





### A really interesting result

#### Sn is more mobile along the whisker than across it



reported by J. Smetana, iNEMI Tin Whisker Workshop at

ECTC May 31 2005

```
Sn diffusion on surfaces

•Sn on Sn (1 0 0) || to c-axis = 5

(kJmole<sup>-1</sup>)

•Sn on Sn (1 0 0) \perp to c-axis = 29

(kJmole<sup>-1</sup>)

•Sn on Pb (1 0 0) = 4.5 (kJmole<sup>-1</sup>)

•Pb on Pb (1 1 1) = 4.5 (kJmole<sup>-1</sup>)

•2 Sn on Sn (100) =141 (kJmole<sup>-1</sup>)

Concerted motion
```

At 25 (°C): 159 Sn atoms out of every 160 Sn atoms move along the axis of the whisker.





### **Sn stability on Pb**

Freeman, Materials Design



Page 13

### Pb stability on Sn



Freeman, Materials Design



Page 14



#### **Initial Grain Boundary Model Calculations**

Freeman, Materials Design



Sn in Sn-Pb (1 0 0)

Pb in Sn-Sn (2 1 0)

Sn-Pb grain boundary collapses Glues surfaces & Traps Sn



### Do we really know the driving force?

At 25 (°C):

 $E_{2} = 29 (kJ mol^{-1})$ 

- 13% of Sn atoms, have energy to move along Whisker length
- 0.0008% of Sn atoms have energy to move across whisker base
- Motion ∥ c-axis is 160 times more probable than motion ⊥ c-axis



- Most theories invoke compressive stress near base as driving force
  - Choi measured compressive stress
    - relative to whisker as neutral
    - Initial results showed no compressive stress at whisker base using published cell constants
    - Publishes stress map shows compressive stress > 400 (psi) at base of whisker
  - Chalmers reports compressive relaxation of single crystal tin (1935)
    - Yield limit near 100 to 200 (psi)
    - Creep is irreversible
    - Occurs in hours
    - Uses Hg diffusion along grain boundaries to separate crystals within minutes
- RMS work shows Oxygen on (100), (010) and (001) surfaces puts Sn in tension, with ~ 5% volume strain!

Anisotropic self diffusion promotes whiskers

Page 16



### Ready? The next step is a BIG one!



9/13/2011 Page 17

# And now for something completely different....



– QUESTION: How much Pb is needed to 'stop' transport?



Raytheon

#### Raytheon

### Percolation

#### It's not just for coffee anymore!

- Percolation describes connectivity between adjacent sites
  - Describes:
    - Electrical conductivity of particles (e.g. filled polymers)
    - Modulus & strength of polymers
    - Diffusion & permeation
  - $P_C$ : the critical point for properties
    - Electrical continuity
    - Gel point for polymers
    - Diffusion allowed / inhibited
  - **P**<sub>c</sub>
    - ~ 0.5 for 2D square array
    - ~ 0.25 for 3D cubic array
    - But, Pb inhibits at 5% < Pb < 10% (m/m)...... Hmm....



Adjacent sites may, or may not be connected



A Sn Pb (dark) alloy

Sn diffuses between Sn grains... Does Pb create a percolation network?



An *infinite network* spans the sample at P = P<sub>C</sub>

### Why does 3% (m/m) Pb not inhibit whiskers?



3.5 %(v/v) Pb is about 6.5%(m/m) Pb, including solubility

#### Raytheon

### Percolation theory Scaling & experimental validation

- Scaling of percolation controlled observable
  - Electrical conductivity
  - Modulus
  - Isotope transport
  - Inverse Swiss cheese model
    - Electrical conductance scales as (P-P<sub>c</sub>)<sup>1.3</sup> and (P-P<sub>c</sub>) <sup>1.9</sup> in 2D and 3D.
    - Modulus & mass transport scales as (P-P<sub>c</sub>)<sup>1.3</sup> and (P-P<sub>c</sub>)<sup>1.4</sup> in 2D and 3D.
- Experimental
  - Look for change in whisker induction stress
  - Isotope study of Sn transport using SIMS (Woodrow, Boeing)

## Relationship between diffusion and percolation networks established.

TABLE I. Estimates of the differences between the transport percolation exponents in the continuum models  $(\overline{t}, \overline{f}, \text{ and } \overline{e})$  and the corresponding exponents on a discrete lattice. Nonzero entries in the table correspond to the upper bounds in Eq. (5), and therefore are slight overestimates of the actual values. (a) The Swiss-cheese model; (b) the inverted Swiss-cheese or potential model.



Shechao Feng Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108

B. I. Halperin Department of Physics, Harvard University, Cambridge, Massachusetts 02138

P. N. Sen Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108 (Received 27 May 1986)



#### ASU: 5 wt% Pb Anode



#### Chawla & Williams, ASU

Exsolved Pb Volume Fraction Phase Diagram: 2.7% Image Analysis: 3.5%

Pb Cluster Sizes ( $\mu$ m<sup>2</sup>) Mean: 2.5 Yellow: 20 - 30 (50 clusters) Blue: 30 - 40 (13 clusters) Green: 40 - 50 (5 clusters) Red: > 50 (2 clusters) Largest: 67



#### Inverse Swiss cheese Percolation network exists



#### ASU: 10 wt% Pb Anode

Chawla & Williams, ASU

00 um

#### Additional Pb improves percolation network

Exsolved Pb Volume Fraction Phase Diagram: 6.2% Image Analysis: 6.7%

Pb Cluster Sizes  $(\mu m^2)$ Mean: 2.9 Yellow: 20 – 30(101 clusters) Blue: 30 – 40 (33 clusters) Green: 40 – 50 (9 clusters) Red: > 50 (8 clusters) Largest: 81



#### **Serial Sectioning Process Flow Chart (ASU)**



Chawla & Williams, ASU





### 3D images of 10% (m/m0 Pb in Sn (ASU) Chawla & Williams, ASU



.... percolation network? You bet!



### Agenda

- Effect of Oxygen on whisker surface
- Need for Compressive stress
- Inter-granular transport of Sn
- Inhibition mechanism of Pb
- Promotion mechanism by Zn, Cu and Mn
- Summary and conclusions



### Method

- Create a model grain boundary
  - Permit motion perpendicular to boundary
  - Pin all motion along boundary
  - Insert other metals, as a second phase, into boundary
    - Find the minimum energy configuration (relax)
  - Insert a lone tin atom into the second phase
    - Find the minimum energy configuration



### The (1 0 0 ) model







### Agenda

- Effect of Oxygen on whisker surface
- Need for Compressive stress
- Inter-granular transport of Sn
- Inhibition mechanism of Pb
- Promotion mechanism by Zn, Cu and Mn
- Summary and conclusions



### What does Zn do?



#### **Raytheon**

### Mn





Mn is known whisker Promoter Will grow whiskers after gaps develop between Sn grains



### Why Mn alloys grow whiskers in tension



Mn is known whisker Promoter



### Why Pb inhibits whiskers.....





9/13/2011 Page 34



### Agenda

- Effect of Oxygen on whisker surface
- Need for Compressive stress
- Inter-granular transport of Sn
- Inhibition mechanism of Pb
- Promotion mechanism by Zn, Cu and Mn
- Summary and conclusions



### Summary

- Surface oxides put tin whisker in Tension
  - Whisker 'sucks' tin from base



- Pure tin relaxes by plastic creep within hours
- Diffusion of Tin along whisker is 160 times faster than diffusion across whisker base
- Inverse Swiss cheese model of percolation explains
  - > 3.5% (v/v) of second phase is needed to establish infinite network
  - This is 6.5% (m/m) Pb, including RT solubility
- Pb appears to 'trap' Sn
- Mn, & Zn appear to open channels
- Atomistic modeling is a useful tool for persistent problems



### Acknowledgements

- Clive Freeman Materials Design, Inc
- Erich Wimmer Materials Design, Inc.
- Nikhilesh Chawla Arizona State University
- Jason Williams Arizona State University
- Bill Rollins
  Raytheon Missile Systems
- Dave Pinsky Raytheon Integrated Defense Systems.

### References

- Boettinger, W. J., Johnson, C. E., Bendersky, L. A. Moon, K.-W., WIlliams, M.E., Stafford, G. R., Acata Materialia, 53, (2006), 5033-5060
- Chalmers, B. Proc Roy Soc. London A, 156 (1936) 427-443
- Choi, W.J., Lee, T.Y., Tu, K. N., Tamura, N., Celesete, R. S., MacDowell, A. A., Bong, Y.Y, Nguyen,L., Sheng, G. T. T., (2002) Structure and Kinetics of whisker growth on Pb-Free solder finish, 628-633
- Feng, S., Halperin, B. I., Sen, P. N., Phys Rev B., 35, No 1, (1987) 197-214
- Hutchinson, B., Oliver, J., Nylen, M., Hagstrom, J. Mater Sci Forum (2004); 467-470; 465
- Kerstin, A.R., J. Phys. A: Math. Gen. 16 (1983) 3071-3075