

IMAPS Chesapeake-area *Winter Technical Symposium* Wednesday, January 27, 2010 3:00 - 6:50 pm

Effect of Temperature Cycling Parameters (Dwell and Mean Temperature) on the Durability of Pb-free solders

Michael Osterman,

Center for Advanced Life Cycle Engineering (CALCE) University of Maryland College Park, MD 20742

What is CALCE?

Center for Advanced Life Cycle Engineering (founded 1987) is dedicated to providing a knowledge and resource base to support the development and sustainment of competitive electronic components, products and systems.

Focus areas:

- Physics of Failure
- Design of Reliability
- Accelerated Qualification
- Supply-chain Management
- Obsolescence
- Prognostics

Center Organization 16 research faculty 5 technical staff 60+ PhD students 30+ MS students 11 visiting scholars

		Cliente	
	CALU		
Alcatel-Lucent	Emerson Electric Co.	Lockheed Martin	Schlumberger
 Agilent Technologies 	Emerson Network Power	Lutron Electronics	Schweitzer Engineering Labs
• Amkor	Emerson Process Management	• Maxion Technologies, Inc.	Seagate Technologies
Arbitron	Ericsson AB	• Motorola	Selex-SAS
• Arcelik	• Daimler	• Joint Strike Fighter Program	• Sensors for Medicine and Science,
ASC Capacitors	Dell Computer Company	• Mobile Digital Systems, Inc.	Inc.
• ASE	• DRS EW Network Systems, Inc.	• n-Code	SiliconExpert
Arbitron	Essex Corporation	• NASA Goddard Space Flight	Space Systems Loral
Astronautics	• Exponent, Inc.	• NetApp	SolarEdge Technologies
Atlantic Inertial Systems	Fairchild Controls Corp.	nCode International	Starkey Laboratories, Inc
• AVI-Inc	Filtronic Comtek	Nokia Siemens	Sun Microsystems
Axsys Engineering	• GE Fanuc Embedded Systems	Northrop Grumman	Symbol Technologies, Inc
• Battelle	GE Global Research	NXP Semiconductors	Team Corp
Branson Ultrasonics	• General Dynamics – AIS	Ortho-Clinical Diagnostics	Team Pacific Corporation
Brooks Instruments	Goodrich Control Systems	PEO Integrated Warfare	Tech Film
Capricorn Pharma	General Motors	Petra Solar	• Tekelec
Cascade Engineering	Guideline	• Philips	• Teradyne
AMSAA Reliability Branch	Hamlin Electronics Europe	Philips Medical Systems	The Bergquist Company
Boeing	Hamilton Sundstrand	Pole Zero Corporation	• The University of Michigan
BAE Systems	Harris Corp	Pressure Biosciences	Tin Technology Inc
Cisco Systems, Inc.	• Honda	Raytheon Company	TruePosition, Inc.
Crane Aerospace & Electronics	Honeywell	Rendell Sales Company	• Toshiba
Curtiss-Wright Corp	Howrey, LLP	Research in Motion	TRW Automotive
• CDI	• Huawei	• RNT, Inc.	TÜBİTAK Space Technologies
De Brauw Blackstone Westbroek	• Intel	Rolls Royce	• U. K. Ministry of Defence
Dell Computer Corp.	Instituto Nokia de Technologia	Rockwell Automation	• U. S. AMSAA
• EIT, Inc.	• Juniper	Rockwell Collins	• U. S. ARL
Embedded Computing & Power	 Johnson and Johnson 	Qualmark	• U. S. Naval Surface Warfare
EMCORE Corporation	Kimball Electronics	Samsung Electro-Mechanics	Center
• EADS – AirBus	• L-3 Communication Systems	Samsung Mechtronics	• Vectron International, LLC
• EMC	LaBarge, Inc	Samsung Memory	• Vestas
Emerson Advanced Design	Lansmont Corporation	• Samsung Techwin	• Weil, Gotshal & Manges LLP
Emerson Appliance Controls	Laird Technologies	• S.C. Johnson Wax	Whirlpool Corporation
Emerson Appliance Solutions	Liebert Power and Cooling	Sandia National Labs	• WiSpry, Inc.
	• LM Aero - Ft. Worth Site	• SanDisk	Woodward Governor

Lead-free Impact on Mission/Life Critical Systems

- New manufacturing and support challenges
 - New and diverse material set
 - Mixed lead and lead-free materials
 - Reprocessed parts (Re-balling and Hot Solder Dip)
 - Repair materials/processes
- New failure mechanisms
 - Tin whiskers
 - Pad cratering
 - Creep corrosion
 - Drop fragility
- Unproven qualification methods

Cyclic Fatigue Durability – SAC vs SnPb

Sn37Pb

SAC

Under cyclic stress tin-lead solder exhibits grain coarsening (enlargement), crack formation and growth. For lead-free SAC solder, the structure exhibits grain formation due to recrystalization which results in finer grains that separate at grain boundaries resulting in crack growth.

Durability of Solder under a Temperature Cycle

Crossing point likely to shift due to temperature cycle parameters (i.e. mean temperature, temperature range, dwell time, and ramp rate)

IEEE Reported Temperature Cycle Test Conditions 2004 to 2008

• 73% of reported temperature cycling fell in the range of -55 to 125C

Based on reviewed of IEEE literature

IEEE Resources Solders Under Investigation 2004-2008

http://www.calce.umd.edu

- **Tin silver copper** solder remain the most studied
- Tin silver alloys • identified in 77% of articles
- **Tin copper alloys** identified in 15%

Test Specimen and Test Details

Solders Completed

- •Indium SMQ 230 Sn95.4/Ag3.9/Cu0.7
- •Indium SMQ 230 Sn96.5/Ag3.5
- •Indium SMQ 92J Sn63/Pb37
- •Indium SMQ92J Sn61.5/Pb 36.5/Ag2 (SPA)
- •Aim Sn96.5Ag3.0Cu0.5 w/254 flux (SAC305)
- •Aim SN100C Sn/Cu/Ni(.5) w/254 flux SN

Sample Sized and Monitoring

- 16 samples in each test condition
- Resistance of each chip is monitored by a data logger.
- Temperature is recorded at the center of each card.
- Test continues until 100 % failure occurs.
- Cross sectioning was performed on failed test specimens to verify a solder interconnect failure.

Packages Under Test

- 68-pin LCCC: 24mm × 24mm
- 84-pin LCCC: 30mm × 30mm
- PCB Board: 130 x 93 x 2.5 mm. FR4

Test Matrix

*Dwell at minimum temperature is set to be 15 minutes. ²For this run, the low end temperature will be extended and max dwell will be fixed at 15 minutes

Test	Min. Temp. (°C)	Max. Temp. (°C)	Temp. range (°C)	Dwell Time at Max temp* (min)	Solders
1	0	100	100	15	All
2	-25	75	100	15	All
3	25	125	100	15	All
4	0	100	100	75	All
5	25	125	100	75	All
6	-25	75	100	75	All
9	-50	50	100	15	All
10	-25	75	100	120	SAC305, SN100C, SnPbAg
11	-25	75	100	75 ²	SAC305, SN100C, SnPbAg

Failure Analysis

Side view of cracked solder interconnects for a 68 IO CLCC

Typical crack path observed in failed specimens

Visual and optical examination of failure sites clearly identifies solder cracking as root cause of monitored resistance failure.

-50 to 50 °C (Dwell 15 min)

Probability - Weibull

SAC305 found to have longer life than SN100C and SnPbAg solders under temperature cycle loading.

Caice Center for Advanced Life Cycle Engineering http://www.calce.umd.edu

Comparison of Time to Failure (68 IO Package)

decreasing behavior.

Comparison of Cyclic Mean Temperature on a fixed 100 °C Temperature Range Cycle (15 minute dwell)

With the exception of the tin-lead-silver (SnPbAg) solder, solder interconnect life increased as the cyclic mean temperature was reduced.

Impact of Cyclic Mean Temperature and Dwell

Dwell has a larger effect when the medium cyclic temperature is lower. The SnPbAg results are puzzling.

Impact of Dwell on a -25 to 75 °C Temperature Cycle

Low temperature dwell had a stronger reduction in life than anticipated. For tin-lead-silver (SnPbAg), dwelling for 75 minutes at -25 C was more damaging than dwell at 75 minutes at 25C. The lowest life for SnPbAg occurring with the 15 minute dwell was also unexpected. SAC305 versus SAC397

∆T=100°C Mean Temp (dwell time)

With the exception of 75(15), SAC 305 is slightly less reliability than SAC 397 under temperature cycle loads.

Sn37Pb versus Sn36Pb2Ag

Sn37Pb performed better than Sn36Pb2Ag in all completed tests.

All solders show a dwell effect on the -25 to 75C test to dwell. Tin-lead based solder showed a reduced effect after 60 minutes compared to SAC205 and SN100C.

Impact of Extended Dwell on Fatigue Life

Solder Fatigue Life Models

• Strain Range Model (Engelmaier)

$$N_f = \frac{1}{2} \left(\frac{\Delta \gamma_p}{2\varepsilon_f} \right)^{\frac{1}{c}}$$

• Inelastic Energy (Darveaux)

$$\frac{dA}{dN} = C \left(\Delta W\right)^{b}$$

• Energy Partitioning (Dasgupta)

$$Energy = U_{e} + W_{p} + W_{cr} = U_{o} N_{fe}^{b'} + W_{po} N_{fp}^{c'} + W_{co} N_{fc}^{d'}$$

• Partitioned Creep Strain/Energy (Syed)

$$Nf = (0.02E_{GBS} + 0.063E_{MC})$$

Fitted Strain Range Model Parameters

Solder Parameters	SnPb	SAC397	Sn3.5Ag	
c _o	-0.502	-0.347	-0.416	
C ₁	-7.34E-04	-1.74E-03	-2.10E-03	
c ₂	1.45E-02	7.83E-03	1.40E-02	
ε _{f*} [1] 2.25		3.47	2.25	
R^2	R^2 0.898		0.980	

$$N_f = \frac{1}{2} \left(\frac{L\Delta T}{2e_f^{[1]}} \right)^{\frac{1}{c}}$$

 $\varepsilon_{f} = Constant$

<u>A Strain Range Based Model for Life Assessment</u> of Pb-free SAC Solder Interconnects, M. Osterman, A. Dasgupta, B. Han, *56th Electronic Component and Technology Conference*, pp. 884 -890, May 30-June 2, 2006

Validation of Strain Range Solder Interconnect Fatigue Life Model

2 mm thick board contained PBGA, TSOP, TQFP, CLCC packages. The simulation model was based on test vehicle used under the JGPP/JCAA Pb-free Solder Test Program. Separate sets of test assemblies were subjected to a -55 to 125°C and a -20 to 80°C temperature cycle conditions

Model vs Experiment Data for SN100C

- 1. M. Osterman, C07-06 CALCE EPSC Project, 2007
- 2. J. Arnold, N. Blattau, C. Hillman, K. Sweatman, Reliability Testing of Ni-Modified SnCu and SAC305 –
- Accelerated Thermal Cycling, SMTA International 2008, pp 187-190, Aug. 2008
- 3. M. Osterman, C08-08 CALCE EPSC Project, 2008

Acceleration Factors

$$AF = \frac{N_{use}}{N_{test}}$$

Norris – Landzberg Acceleration Factor Model for Collapsed Bump Solder Interconnects

$$AF = \left(\frac{f_f}{f_t}\right)^m \left(\frac{\Delta T_t}{\Delta T_f}\right)^n \exp^{\frac{E_a}{K} \left(\frac{1}{T_f} - \frac{1}{T_t}\right)}$$

SnPb solder, C4, m=-0.33, n=1.9, Ea/K=1414 [1] SAC solder, BGA, CSP, TSOP, m=0.132 (here f is replaced with dwell time), n=2.65, Ea/K=2185 [2]

SAC solder, m=0.33, n=1.9, Ea/K=1414 [3]

- K. C. Norris and A. H. Landzberg, "Reliability of controlled collapse interconnections", IBM J. Res. Develop., May 1969, pp. 266-271,
- [2] N. Pan et al, "An Acceleration Model for Sn-Ag-Cu Solder Joint Reliability under Various Thermal Cycle Conditions", Proc. SMTA, 2005, pp. 876-883
- [3] V. Vasudevan and X. Fan, An Acceleration Model for Lead-Free (SAC) Solder Joint Reliability under Thermal Cycling, 2008 ECTC, May 2008, pp. 139-145.

Acceleration Factor Comparison - SN100C

Part Type	∆T dwell	AF	AF CALCE (Nf/Nt)	Error	AF (∆Tf/∆Tt) ^{1/c}	Error	AF N-L	Error
	-40 to 125 °C	1.00	1.00	0	1.00	0	1.00	0
R2512	25 to 125°C td=10 min	2.15	1.40	-0.348	3.42	0.594	3.20	0.493
R2512	25 to 125°C td=30 min	1.42	1.69	0.192	3.53	1.488	3.21	1.261
R2512	25 to 100°C td=10 min	9.64	4.95	-0.486	7.93	-0.177	4.94	-0.487
TSOP	25 to 125°C td=10 min	2.30	3.71	0.616	3.42	0.489	3.20	0.394
TSOP	25 to 125°C td=30 min	3.24	4.65	0.434	3.53	0.091	3.21	-0.009

Examination of acceleration factor estimation with data from ref. 2. CALCE model over estimates acceleration with leaded parts (leaded formulation may be issue). Unadjusted Norris-Landzberg provides relatively good correlation

Conclusions

- Under temperature cycle loading, SAC 305 solder is slightly less durable than SAC379.
- Under temperature cycle loading, SnPbAg solder is slightly less durable than SnPb.
- Under temperature cycle loading, SN100C is less durable than SAC305.
- Lowering the medium cycle temperature dramatically increases the fatigue life of tested lead-free solders.
- Extended low temperature dwell for the temperature cycle -25 to 75 °C is more damaging than expected, particularly for SnPbAg.
- For maximum temperature of 125°C, dwell time increase from 15 to 75 minutes found to have little effect.
- The tests revealed that extended low temperature dwell for the temperature cycle range of -25°C to 75°C was more damaging than expected, particularly for SnPbAg.
- The impact of dwell was found to be more significant when the median cyclic temperature shifted from 75°C to 25°C. Extending the dwell from 15 minutes to 120 minutes did not result in SAC305 having a lower durability than SnPbAg. Test data also supported the finding that dwell has a logarithmic response to dwell time.