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Lead-free Impact on Mission/Life Critical Systems
– New manufacturing and support challenges

• New and diverse material set
• Mixed lead and lead-free materials
• Reprocessed parts (Re-balling and Hot Solder Dip)

R i i l /• Repair materials/processes
– New failure mechanisms

• Tin whiskers• Tin whiskers
• Pad cratering
• Creep corrosionp
• Drop fragility 

– Unproven qualification methods
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Cyclic Fatigue Durability – SAC vs SnPb

Sn37Pb SACSn37Pb SAC
Under cyclic stress tin-lead solder exhibits grain coarsening 
(enlargement), crack formation and growth. For lead-free SAC ( g ), g
solder, the structure exhibits grain formation due to 
recrystalization which results in finer grains that separate at 
grain boundaries resulting in crack growth
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grain boundaries resulting in crack growth.



Durability of Solder under a Temperature Cycle 
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SnPb outperforms Pb-free
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Crossing point likely to shift due to temperature cycle parameters 
(i e mean temperat re temperat re range d ell time and ramp
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(i.e. mean temperature, temperature range, dwell time, and ramp 
rate)



IEEE Reported Temperature Cycle Test 
Conditions

2004 to 2008

• 73% of reported 
temperature 
cycling fell in the 
range of -55 to 
125C
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Based on reviewed of IEEE literature



IEEE Resources
Solders Under Investigationg

2004-2008

• Tin silver copper 
solder remain the 
most studied

• Tin silver alloys• Tin silver alloys 
identified in 77% of 
articles

• Tin copper alloys 
id tifi d i 15%identified in 15%
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Test Specimen and Test Details
• Solders Completed• Solders Completed

•Indium SMQ 230 Sn95.4/Ag3.9/Cu0.7
•Indium SMQ 230 Sn96.5/Ag3.5
•Indium SMQ 92J Sn63/Pb37Indium SMQ 92J Sn63/Pb37
•Indium SMQ92J Sn61.5/Pb 36.5/Ag2 (SPA)
•Aim Sn96.5Ag3.0Cu0.5 w/254 flux (SAC305)
•Aim SN100C Sn/Cu/Ni(.5) w/254 flux SN

Sample Sized and Monitoring
• 16 samples in each test condition
• Resistance of each chip is monitored by a 

data logger.
• Temperature is recorded at the center of 

h d

Packages Under Test
• 68-pin LCCC: 24mm  24mm
• 84-pin LCCC: 30mm  30mm

each card.
• Test continues until 100 % failure occurs.
• Cross sectioning was performed on failed 

test specimens to verify a solder

• PCB Board: 130 x 93 x 2.5 mm, 
FR4
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test specimens to verify a solder 
interconnect failure.



Test Matrix 
DwellTemperature

Tmax

thot

Temperature

Tmax

thot
Test

Min. 
Temp. 
(C)

Max. 
Temp.
(C)

Temp. 
range 
(C)

Dwell 
Time at 

Max 
temp* 
(min)

Solders

T TT T
1 0 100 100 15 All

2 -25 75 100 15 All

time

Tmin

t

time

Tmin

t

3 25 125 100 15 All

4 0 100 100 75 All

5 25 125 100 75 All
tcoldtcold

6 -25 75 100 75 All

9 -50 50 100 15 All
*Dwell at minimum temperature 

10 -25 75 100 120
SAC305, 
SN100C, 
SnPbAg

11 -25 75 100 752
SAC305, 
SN100C, 
SnPbAg

is set to be 15 minutes.
2For this run, the low end 
temperature will be extended 
and max dwell will be fixed at 15 
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minutes



Failure Analysis

Side view of cracked solder 

Typical crack path 
observed in failed 

i

Visual and optical examination of failure sites clearly identifies solder

interconnects for a 68 IO CLCC specimens
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Visual and optical examination of failure sites clearly identifies solder 
cracking as root cause of monitored resistance failure.



-50 to 50 oC (Dwell 15 min)
Probability - Weibull
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University Of maryland
Dr. Osterman

SAC305 f d t h l lif th SN100C d
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SAC305 found to have longer life than SN100C and 
SnPbAg solders under temperature cycle loading.



Comparison of Time to Failure 
(68 IO Package)(68 IO Package)

Peak Temperature (oC) 
(Dwell at Peak (min) )

Normalized

For the Pb-free solders, increasing the average cyclic temperature showed a 
decrease in time to failure. As can be seen in the above chart, the behavior of the 
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SnPb solder at the 100  and 125oC peak temperature shows non-monotonically 
decreasing behavior. 



Comparison of Cyclic Mean Temperature on a 
fixed 100 oC Temperature Range Cycle (15 

minute dwell)

T=100oC

ed
 N

63 Mean Temp
Dwell time 15 min.

or
m

al
iz

e
N

o

With the exception of the tin-lead-silver (SnPbAg) solder, solder 
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p ( g)
interconnect life increased as the cyclic mean temperature was reduced.



Impact of Cyclic Mean Temperature and Dwell

3 T=100oC

iz
ed

 N
63 Mean Temp

(dwell time)

N
or

m
al

i
N

Dwell has a larger effect when the medium cyclic temperature 
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g y p
is lower.  The SnPbAg results are puzzling.



Impact of Dwell on a -25 to 75 oC Temperature 
CycleCycle

T=100oC
ze

d 
N

63 Tm=50oC

N
or

m
al

iz
N

Low temperature dwell had a stronger reduction in life than anticipated.    
For tin-lead-silver (SnPbAg), dwelling for 75 minutes at -25 C was 
more damaging than dwell at 75 minutes at 25C. The lowest life for
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Copyright © 2010 CALCE

16Center for Advanced Life Cycle Engineering
http://www.calce.umd.edu

more damaging than dwell at 75 minutes at 25C.   The lowest life for 
SnPbAg occurring with the 15 minute dwell was also unexpected. 



SAC305 versus SAC397

T=100oC

ed
 N

63 Mean Temp
(dwell time)

or
m

al
iz

e
N

o

With the exception of 75(15),  SAC 305 is slightly less 
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reliability than SAC 397 under temperature cycle loads.  



Sn37Pb versus Sn36Pb2Ag

T=100oC

ze
d 

N
63 Mean Temp

(dwell time)

N
or

m
al

iz
N

Sn37Pb performed better than Sn36Pb2Ag in all completed tests.
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Sn37Pb performed better than Sn36Pb2Ag in all completed tests.



Impact of Dwell on Tested Solders

T=100oC

ze
d 

N
63 Mean Temp

(dwell time)

N
or

m
al

iz
N

All solders show a dwell effect on the -25 to 75C test to dwell.  Tin-lead  based 
ld h d d d ff t ft 60 i t d t SAC205 d
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solder  showed a reduced effect after 60 minutes compared to SAC205 and 
SN100C. 



Impact of Extended Dwell on Fatigue Life

University of Maryland
Copyright © 2010 CALCE

20Center for Advanced Life Cycle Engineering
http://www.calce.umd.edu



Solder  Fatigue Life Models
• Strain Range Model (Engelmaier )

1

1 c 


• Inelastic Energy (Darveaux )

1
2 2
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f
f

N

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 
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ss

 (M
Pa

)

W
p

E P i i i (D )
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• Energy Partitioning (Dasgupta)

''' d
fcco

c
fppo

b
feocrpe NWNWNUWWUEnergy 

Strain

• Partitioned Creep Strain/Energy (Syed)
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 EENf 0630020 
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 MCGBS EENf 063.002.0 



Fitted Strain Range Model Parameters
1

Solder
Parameters SnPb SAC397 Sn3.5Ag

co -0.502 -0.347 -0.416

c1 -7.34E-04 -1.74E-03 -2.10E-03

c

f
f e

TLN ]1[22
1










 


1

c2 1.45E-02 7.83E-03 1.40E-02

f*
[1] 2.25 3.47 2.25

R^2 0.898 0.966 0.980 









d
sj t

cTccc 3601ln210

f = Constant

[1] Th f ti d tilit t t d i d

 d

e 
L

ife

[1] The fatigue ductility constant was derived 
only considering the neutral distance length of 
the package.  This value must be adjusted with 
respect to the cyclic temperature range, CTE 
mismatch between the package and the board, ed

 F
at

ig
ue

p g ,
and the effective solder joint height.

N
or

m
al

iz
e

A Strain Range Based Model for Life Assessment 
of Pb-free SAC Solder Interconnects , M. 
Osterman, A. Dasgupta, B. Han, 56th Electronic 
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Component and Technology Conference, pp. 884 -
890, May 30-June 2, 2006 Dwell Time (hrs)



Validation of Strain Range Solder 
Interconnect Fatigue Life ModelInterconnect Fatigue Life Model 

2 mm thick board contained PBGA, TSOP, 
TQFP, CLCC packages.  The simulation 
model was based on test vehicle used undermodel was based on test vehicle used under 
the JGPP/JCAA Pb-free Solder Test Program. 
Separate sets of test assemblies were 
subjected to a  -55 to 125oC and a 

l di i-20 to 80oC temperature cycle conditions

calcePWA Model

n
E

 S
im

ul
at

io

-55 to 125 C test
E i t

C
A

L
C

E

University of Maryland
Copyright © 2010 CALCE

23Center for Advanced Life Cycle Engineering
http://www.calce.umd.edu

Experiment
M. Osterman and M. Pecht, Strain Range Fatigue Life Assessment of Lead-free Solder Interconnects Subject to Temperature Cycle Loading, Soldering & 
surface Mount Technology, Vol. 19, No. 2, pp. 12-17, 2007. 



Model vs Experiment Data for SN100C 

1. M. Osterman, C07-06 CALCE EPSC Project, 2007
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2. J. Arnold, N. Blattau, C. Hillman, K. Sweatman, Reliability Testing of Ni-Modified SnCu and SAC305 –
Accelerated Thermal Cycling, SMTA International 2008, pp 187-190, Aug. 2008

3. M. Osterman, C08-08 CALCE EPSC Project, 2008



Acceleration Factors

test

use

N
NAF 



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 aEnmf
11

Norris – Landzberg Acceleration Factor Model for Collapsed Bump 
Solder Interconnects
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



 tf

a
TTK

f
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t

f

T
T

f
f

AF exp

SnPb solder, C4, m=-0.33, n=1.9, Ea/K=1414 [1]
SAC solder, BGA, CSP, TSOP,  m=0.132 (here f is replaced with dwell time), 

n=2.65, Ea/K=2185 [2]
SAC ld 0 33 1 9 E /K 1414 [3]

[1] K. C. Norris and A. H. Landzberg, “Reliability of controlled collapse interconnections”, IBM J. Res. Develop., May 1969, pp. 266-
271, 

[2] N. Pan et al, “An Acceleration Model for Sn-Ag-Cu Solder Joint Reliability under Various Thermal Cycle Conditions”, Proc. SMTA, 

SAC solder, m=0.33, n=1.9, Ea/K=1414 [3]
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[ ] , g y y , ,
2005, pp. 876-883

[3] V. Vasudevan and X. Fan, An Acceleration Model for Lead-Free (SAC) Solder Joint Reliability under Thermal Cycling, 2008 ECTC,  
May 2008, pp. 139-145.



Acceleration Factor Comparison - SN100C

Part 
Type

T
dwell AF

AF
CALCE
(Nf/Nt)

Error AF
(Tf/Tt)1/c Error AF

N-L Error
(Nf/Nt)

-40 to 125 oC 1.00 1.00 0 1.00 0 1.00 0
25 to 125oC

R2512 td=10 min 2.15 1.40 -0.348 3.42 0.594 3.20 0.493

R2512
25 to 125oC
td=30 min 1.42 1.69 0.192 3.53 1.488 3.21 1.261

R2512
25 to 100oC

d 10 i 9 64 4 95 0 486 7 93 0 177 4 94 0 487R2512 td=10 min 9.64 4.95 -0.486 7.93 -0.177 4.94 -0.487

TSOP
25 to 125oC
td=10 min 2.30 3.71 0.616 3.42 0.489 3.20 0.394

TSOP
25 to 125oC
td=30 min 3 24 4 65 0 434 3 53 0 091 3 21 -0 009TSOP td=30 min 3.24 4.65 0.434 3.53 0.091 3.21 0.009

Examination of acceleration factor estimation with data from ref. 2. CALCE model over 
i l i i h l d d (l d d f l i b i ) U dj d
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estimates acceleration with leaded parts (leaded formulation may be issue). Unadjusted 
Norris-Landzberg provides relatively good correlation



Conclusions
• Under temperature cycle loading, SAC 305 solder is slightly less durable 

th SAC379than SAC379.
• Under temperature cycle loading, SnPbAg solder is slightly less durable 

than SnPb.
• Under temperature cycle loading SN100C is less durable than SAC305• Under temperature cycle loading, SN100C is less durable than SAC305.
• Lowering the medium cycle temperature dramatically increases the fatigue 

life of tested lead-free solders.
• Extended low temperature dwell for the temperature cycle -25 to 75 oC isExtended low temperature dwell for the temperature cycle 25 to 75 C is 

more damaging than expected, particularly for SnPbAg.
• For maximum temperature of 125oC, dwell time increase from 15 to 75 

minutes found to have little effect.
• The tests revealed that extended low temperature dwell for the temperature 

cycle range of -25ºC to 75oC was more damaging than expected, 
particularly for SnPbAg. 

• The impact of dwell was found to be more significant when the median 
cyclic temperature shifted from 75oC to 25oC.  Extending the dwell from 15 
minutes to 120 minutes did not result in SAC305 having a lower durability 
th S PbA T t d t l t d th fi di th t d ll h
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than SnPbAg.  Test data also supported the finding that dwell has a 
logarithmic response to dwell time. 


