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Abstract: Reliability prediction is becoming more and more important for electronics 

components and devices, such as avionics. In this paper, a grey prediction model based 

prognostics approach was developed to perform the failure prediction of electronics. The 

grey prediction model first makes the original data set into a new data set with less 

randomness in order to find the tendency. Then, history data is needed for training the 

algorithm and predicting the future condition. Last, the predicted result in the new data set 

is transferred back to the original data set. Compared with traditional data-driven method, 

this approach was especially useful for reliability prediction with small sample size. The 

whole prognostics approach was also verified by two case studies. One was performed on 

electronic boards with ball grid array (BGA) and quad flat package (QFP) components 

under thermal cycle loading. The other was performed on electronic boards with 

capacitors under temperature, humidity and bias tests.  

               Keywords: electronics, failure prediction, grey prediction models, prognostics  

1. Introduction 

A failure prognostics is a process of predicting the useful life of a product based on an 

assessment of its current state-of-health and its past operational and/or performance 

conditions [1]. Failure prognostics for electronics provides information that can be used to 

meet several critical goals, including (1) providing advance warning of failures; (2) 

minimizing unscheduled maintenance, extending maintenance cycles, and maintaining 

effectiveness through timely repair actions; and (3) reducing the life-cycle cost of 

equipment by decreasing inspection costs, downtime, and inventory [2].  

The failure prognostics process involves monitoring data on the operational and 

performance parameters of the product in field.  This data is often collected in real-time or 

near real-time and used in conjunction with prediction models to provide an estimate of its 

state-of-health or degradation and the projection of remaining life. The prediction models 

can be physics-based or data-driven. Physics-based models compare the strength of the 

product versus the damage caused by cumulative exposures to environmental and 

operational conditions. Data-driven methods characterize the normal operating and 

performance conditions of the product and track the changes in these conditions to assess 

the state-of-health and predict the future state or remaining life of the product.  

 



                                        Jie Gu, Nikhil Vichare, Bilal Ayyub, and Michael Pecht 

 

 

436 

The models used in data-driven approaches can be based on wide variety of 

mathematical and statistical methods. The grey prediction model is part of the grey system 

theory, and can be classified as a data-driven approach to perform failure prognostics. The 

grey system theory was developed by Deng [3] in 1982. The main function of it is the 

effective processing of the analysis, modeling, prediction, decision making and control 

with incomplete data. The grey prediction model has been applied in many areas, such as 

information technology [4], energy and power [5], industry and economics [6], accident 

and risk [7], engineering [8], the environment [9] and so on. This paper presents the first 

application of the grey prediction approach for failure prognostics. 

2. Grey prediction model  

The steps used in the grey prediction model are shown in Figure 1 [5]. AGO means the 

accumulated generating operation, and IAGO means the inverse accumulated generating 

operation.  

  

Obtain the original data series: X(0)

Develop the AGO data series: X(1)

Calculate the model parameters using 

the least square method

Predict the future point X(1)

Apply the IAGO to predict values for the 

original data series X(0)
 

Figure 1: Grey prediction procedure 

The accumulated generating operation (AGO) is used to transform an original set of 

data into a new set that highlights trends, but has less noise and randomness. The equation 

used in generating the AGO series is: 
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where, X
(0)

 represents the original data series, and X
(1)

 represents the AGO series. 

After X
(1)

 is obtained, the grey differential equation is built. The general grey 

differential equation with one variable is: 
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where, X
(1)

 represents the AGO series. The coefficients a and b express the relationship 

between dX/dt (rate of change of state) and X is the current state. 

Parameters a and b are determined using the least-square method, which are shown in 

the following equations: 
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where, 



                           Application of Grey Prediction Model for Failure Prognostics of Electronics                         437 

 

 





















−

−

−

=

1)(

1)3(

1)2(

)1(

)1(

)1(

nZ

Z

Z

MM
β

 
(4) 





















=

)(

)3(

)2(

)0(

)0(

)0(

nX

X

X

Y
M

 
(5) 

2

)()1(
)(

)1()1(
)1( iXiX

iZ
+−

=
 (6) 

Then the predicted data points for the AGO series are calculated. X
(1)

 represents the 

predicted AGO series. The equation used in this process is the integral result from 

equation (2), and can be written as follows:  
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where X
(0)

(1) represents the first data in the original series. Then the inverse accumulated 

generating operation (IAGO) is used to get the inverse data series from AGO. It is then 

used to transform the forecasted AGO data series back into the original data series. This is 

achieved using the following equation: 
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where X(0) is the predicted original data series. Combining equations (7) and (8), we can 

get equation (9) as follows: 
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To improve the prediction accuracy, several researchers have presented enhanced grey 

prediction models. One is residual grey prediction model, which can be used to minimize 

prediction error [10]. It has been also found that the basic grey prediction model can be 

used well with slow growth time sequences, but these often perform poorly and make 

delay errors for quick growth time sequences [7]. Mao et al. [7] suggested an improved 

method based on a modified Z series calculation, and a modified Equation (6) was 

proposed in his work.  

3. Failure prognostics of electronic boards  

A printed circuit board (PCB) with ball grid array (BGA) and quad flat package (QFP) 

components shown in Figure 2 was exposed to thermal cycling loads. From experiments, 

the main failure mechanism is solder joint fatigue failure. The solder joint failure was 

checked by trending its resistance drift as shown in Figure 3. In order to consider the 

effect of temperature to resistance, it is important to calculate the residual value 

(resistance drift) rather than resistance only. The failure is defined as the resistance drift 

obtains 0.5Ohm from previous experience. 

     In the first step, the grey prediction model accuracy was verified for component 

QFP256, and compared with other prediction models. The first eight data points 

(resistance drift) were used to verify the prediction accuracy of the ninth point, and the 

results were shown in Table 1. Compared with other models, grey prediction models show 

more accurate results. From previous experience, the signals collected from electronic 

systems vibrate a lot. Therefore traditional prediction methods show larger prediction 

discrepancy, while the grey prediction model focused more on the accumulated effect, and 

showed the more stabilized prediction results. 
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Figure 2: Test board under thermal cycle loading 

 

)(TfR = )(TfR =

In-situ Monitoring

Temperature (T)

Resistance (R)

Resistance drift (D) = Re - R

Analyze features from distributions 

of resistance drifts

Estimated resistance  (Re)

Trend features to predict failure
 

Figure 3: Failure prognostics for solder interconnect failure under temperature cycling 

 

Comparison was also made of the grey prediction model and other prediction models in 

the literature [11], such as linear, exponential, and polynomial prediction models, which 

revealed that the grey prediction model gives the most precise and accurate prediction. In 

addition, assumptions regarding statistical distributions of data are not necessary when 

applying the grey prediction model [12]. Compared with the auto-regressive (AR) model, 

the grey prediction model has the advantage of needing less data for training, while the 

AR model needs much more data to get a corresponding accuracy [3]. Compared with the 

auto-regressive integrated moving average (ARIMA) model, the grey prediction model 

also shows more accuracy when using the same size of training data [13]. The essential 

feature of the grey prediction model is dealing with a small sample size of data. Therefore, 

it is suitable to carry out the dynamic prediction in-situ. In addition, for the grey 

prediction model, the newest data is considered more important than the old historic data. 

The old data will be updated using new data, so the prediction can give more accurate 

results when approaching the actual point.  

  The prediction results based on grey prediction models for different components 

(QFP208, QFP256, and BGA352) are shown in Figure 4, Figure 5, and Figure 6 as 

demonstration. The initial 300 hours data was used for algorithm training purposes. The 

decision making points are chosen based on either of the following two criteria. 
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Table 1: Comparison of different prediction models 

Prediction model Initial Discrepancy (%) – Based 

on few data points 

Grey prediction model 1.05% 

Linear -45.26% 

Quadratic -50.00% 

Exponential -64.21% 

Moving average -40.53% 

ARIMA 15.67% 

One is that the data meets half of the defined failure level (in this case: 

0.5/2=0.25Ohm). The other is that the data is out of the xx σ3+  or xx σ3−  bounds, where 

x  is the mean and xσ  is the standard deviation for a certain data window. These bounds 

were also chosen by Ku [14] and Lin [8]. This criterion is set to capture sudden changes of 

the data. When the decision making point is obtained, it will continue the prediction 

process until the result meets the failure criteria (when the resistance drift obtains 

0.5Ohm). Figure 4, Figure 5, and Figure 6 show that the prediction results match well with 

actual failure point. In addition, the results are conservative, and provide advance 

warming, which means the predicted failure point is always earlier than the actual failure 

point. 
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Figure 4: Failure prediction for QFP208 
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Figure 5: Failure prediction for QFP256 Figure 6: Failure prediction for BGA352 
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4. Failure prognostics of capacitors 

In this experiment, 96 multi-layer ceramic capacitors (MLCC) were selected for in-situ 

monitoring and life testing in elevated temperature (85°C) and humidity (85% RH) 

conditions with one of 3 DC voltage bias levels: rated voltage (50V), low voltage (1.5V), 

and no voltage (0V). Four MLCC types were included, two of which were flexible-

termination MLCCs and two were standard-termination MLCCs. The insulation resistance 

(IR), capacitance (C), and dissipation factor (DF) were monitored in-situ during testing. 

An LCR meter was used to measure capacitance and dissipation factor. A high resistance 

meter was used to measure insulation resistance. In this setup, 96 capacitors were tested 

together and a multiplexer and data logger allowed the measurement of electrical 

parameters for each capacitor once every 200 minutes. The total test lasted for around 

1240 hours. More details can be found in the previous study [15].  

The prognostics approach used in this study is regression, residual, detection and 

prediction analysis (RRDP), which shown in Figure 7. The first step was to select the 

survived capacitors as the training data set. From the training data set, we could calculate 

the mean and standard deviation for each parameter (IR, C and DF), which can be used to 

perform data normalizations. After normalization, regression analysis was performed to 

build a relationship between the normalized IR, normalized C and normalized DF and 

calculate the residual. When the new incoming IR, C and DF data were obtained, data 

normalization was performed using the mean and the standard deviation calculated from 

the training data set, and then calculate the residual again. By comparing this new residual 

value with the residual value in the training data set, anomaly detection could be 

performed, and then followed up by the grey prediction for failures. 

Perform data normalization

Calculate the residual between observation 

and estimation

Perform regression analysis to identify

relationship between multiple parameters 

Build the training residual space from 

training data set

Detect anomalies

Obtain training data 

Predict remaining useful life

Calculate the mean and standard deviation 

Obtain new incoming data

Calculate new residuals between 

observation and estimation

Perform data normalization

Calculate the estimated value using 

relation from training data set

Perform data normalization

Calculate the residual between observation 

and estimation

Perform regression analysis to identify

relationship between multiple parameters 

Build the training residual space from 

training data set

Detect anomalies

Obtain training data 

Predict remaining useful life

Calculate the mean and standard deviation 

Obtain new incoming data

Calculate new residuals between 

observation and estimation

Perform data normalization

Calculate the estimated value using 

relation from training data set

 

Figure 7: Regression, residual, detection and prediction analysis 

The prediction result obtained using the grey prediction model for one capacitor is 

shown in Figure 8. The prediction algorithm was triggered when the residual value 

crossed the 95% confidence interval (around 2 sigma range) line. The predicted failure 

time was hour 753 when the prediction result is below 99.9% confidence interval (around 

3 sigma range). When new incoming data were obtained, the updated prediction result 

was more accurate (hour 800). This approach was repeated for all 96 capacitors, and the 

results were summarized in Table 2. It was found that out of 96 capacitors, the 8 failed 

capacitors could be detected by residual analysis with no missed alarms. Five out of the 
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eight capacitors that failed gave an advance warning of failure. Among the other 88 

survived capacitors, there were eight false alarms.  
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Figure 8: Failure prediction for one capacitor 

Table 2: Summary of prediction results for all 96 capacitors 

Manufacturer Termination DC bias (V) No. of samples 
No. of failures 

from experiment 
No. of missed 

alarms 
No. of false 

alarms 

50 10 5 0 0 

1.5 10 0 0 0 

 

A 

 

Flexible 

0 4 1 0 0 

50 10 0 0 0 

1.5 10 0 0 0 

 

B 

 

Flexible 

0 4 0 0 0 

50 10 0 0 1 

1.5 10 0 0 0 

 

B 

 

Standard 

0 4 0 0 0 

50 10 0 0 2 

1.5 10 0 0 3 

 

C 

 

Standard 

0 4 2 0 2 

5. Conclusions 

In this paper, the application of the grey prediction model was investigated for failure 

prognostics of electronics. The grey prediction demonstrated a higher level of accuracy 

when dealing with small sample size data. Two case studies were used for the results 

verification. In the first experiment, electronic boards with components were under 

thermal cycle loading, and the grey prediction model was used to develop the trend of the 

resistance drift in order to perform prognostics to identify the time it takes to fail. The 

results revealed that the grey prediction method successfully provided advance warning of  
failure. In the second experiment, the grey prediction model showed good promise for 

predicting failures for multilayer ceramic capacitors in the temperature, humidity and bias 

tests. Both experiments demonstrated that the grey prediction model can be implemented 

to perform failure prediction for electronics. Future work can be focused on the 

combination of the physics-of-failure (PoF) model with the grey prediction model. The 

failure probability can be used to trigger the grey prediction model rather than the 

traditional statistical approach in order to make predictions more accurate. 
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