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Abstract: Environmental and usage loads experienced by a product in the field can be 

monitored in-situ and used with prognostic models to assess and predict the reliability of the 

product. This paper presents an approach for recording in-situ monitored loads in a condensed 

form without sacrificing the load information required for subsequent prognostic assessments. 

The approach involves optimally binning data in a manner that provides the best estimate of 

the underlying probability density function of the load parameter. The load distributions were 

developed using non-parametric histogram and kernel density estimation methods.  The use of 

the proposed binning and density estimation techniques with a prognostic methodology were 

demonstrated on an electronic assembly. 
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1. Prognostics and Health Management  

Prognostics and health management (PHM) permits the reliability of a system to be assessed 

in its actual application conditions [1], [2].  PHM is employed by integrating sensor data and 

prediction models that enable in-situ assessment of the extent of deviation or degradation of a 

product from an expected normal operating condition (i.e., the system’s “health” or reliability).  

The objective is to provide: (1) advance warning of failures; (2) minimizing unscheduled 

maintenance, extending maintenance cycles, and maintaining effectiveness through timely 

repair actions; (3) reducing the life-cycle cost of equipment by decreasing inspection costs, 

downtime, and inventory; and (4) improving qualification and assisting in the design and 

logistical support of fielded and future systems [2]. 

One method for PHM implementation involves collecting the environmental and usage 

loads experienced by the product in its life cycle, and using models to assess the degradation 

of the product [2]-[5]. Typical environmental loads include temperature, vibrations, shock, 

pressure, acoustic levels, strain, stress, inert environments, humidity levels, and contamination 

Usage loads include usage frequency, usage severity, usage time, power, heat dissipation, 

current,. 
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and voltage. These life cycle loads, either individually or in various combinations, may lead to 

performance or physical degradation of the product and subsequently reduce its service life. 

The extent and rate of product degradation depends upon the nature, magnitude, and duration 

of exposure of the loads. The damage inflicted, and hence the life consumed can be assessed 

by using the monitored data in conjunction with physics-of-failure [6] based stress and 

damage models [7], [8].  

 

In applications such as civil infrastructure, aircrafts, telecommunication systems and 

military equipment, life cycle loads required for PHM are often remotely monitored using 

sensor systems. Due to either limited accessibility, or logistics and operational constraints, one 

of the major challenges in the implementation of these sensor systems lies in efficient 

management of power and memory consumption [9]-[13]. Thus sensing and data collection 

strategies that enable reduction of on-board storage, power consumption, and uninterrupted 

data collection over longer durations, are generally desired.  

 

One of the emerging methods to achieve in-situ monitoring involves integrating 

embedded processing capabilities with on-board processors of the sensor systems [5], [11] to 

enable immediate and localized processing of the “raw” sensor data. For wireless sensor 

systems, embedded processing enables transmitting fewer amounts of data (processed instead 

of raw data) to the base station, and hence results in lower power consumption. For large 

sensor systems working in a network, this allows decentralization of computational power and 

facilitates efficient parallel processing of data [11], [12], and [14]. 

 

Data simplification is a way to obtain gains in computing speed and testing time, 

condense load histories without sacrificing important damage characteristics, preserve the 

interaction of load parameters, and provide an estimate of the error introduced by reducing 

and simplifying the data.  Data simplification can be achieved using a variety of tools such as 

filters, Fourier transforms, wavelets, Hayes method, ordered overall range, etc. 

 

It is essential to simplify or pre-process the “raw” sensor data to make it compatible with 

the damage models and algorithms needed to conduct prognostics. In particular, it may be 

necessary to extract the relevant load parameters including cyclic mean, amplitudes, ramp 

rates, hold periods, power spectral densities, etc. Commonly used load parameter extraction 

methods include: cycle counting algorithms for extracting cycles from time-load signal, Fast 

Fourier transforms (FFT) for extracting the frequency content of signals, etc.  Depending on 

the application and type of signal, custom load extraction methods may be required. 

 

Figure 1 is a schematic of the in-situ monitoring, pre-processing, and storage of 

environmental and usage loads. A time-load signal is monitored in-situ using sensors, and 

further processed to extract (in this case) cyclic range (∆s), cyclic mean load (Smean), and rate 

of change of load (ds/dt) using embedded load extraction algorithms.  The extracted load 

parameters are stored in appropriate bins to achieve further data reduction.  The binned data is 

downloaded to estimate the distributions of the load parameters for use in damage assessment, 

remaining life estimation, and the accumulation of the products use history. Since the 

accuracy of the damage assessment and remaining life prognostics depend on the accurate 
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estimate of the probability density functions (pdf) of the loads derived from the binned data, it 

is essential to select the appropriate bin-width and number of bins a-priori.  

 

This paper provides a method for applying optimal binning techniques for enabling 

condensed storage of in-situ monitored load histories. Optimal bin-widths relations are used in 

conjunction with non-parametric density estimation techniques, namely the histograms and 

kernels. The approach is then demonstrated. 

 

  

Fig. 1: Load parameters extracted and optimally binned 

 
2. Density Estimation and Binning Optimization  

If the entire data set, without data binning, is retained, a parametric method can be used for 

density estimation. In that case the objective is to find a best fitting parametric function to the 

given data. Standard parametric functions include normal, lognormal, exponential, and 

Weibull, described by parameters such as mean and standard deviation. If the underlying 

distribution is non-standard (e.g., multi-modal), fitting a single standard parametric function to 

the data can result in errors, and fitting multiple parametric functions can make the problem 

solution non-unique. Non-parametric methods can be used to estimate the pdf without 

assuming any parametric structure [15], [16]. Examples of non-parametric density estimation 

methods include histograms, Kernels, orthogonal series estimation, and nearest neighbor 

method. In our study, histograms and kernel estimators were used.  

 

2.1 Histograms 
A histogram is a graphical representation of a frequency distribution in which the height of the 

bins represents the observed frequencies. The choice of bin-width primarily controls the 

representation of the actual data. Smaller bin-widths may present too much details 

Time (t)

L
o

ad
 (

s)

0

0.25

0.5

0.25

0

0.5

0

0.25

0.5

Mean load (Smean) Range (∆s) Ramp rate (ds/dt)

Embedded Data Reduction and Load Parameter Extraction

Time (t)

L
o

ad
 (

s)

Time (t)

L
o

ad
 (

s)

0

0.25

0.5

0.25

0

0.5

0

0.25

0.5

Mean load (Smean) Range (∆s) Ramp rate (ds/dt)

Embedded Data Reduction and Load Parameter Extraction



Nikhil M.Vichare, Peter Rodgers and Michael G. Pecht 

 
152 

(undersmoothing) and larger bin-widths may present or too less details (oversmoothing), of 

the true distribution [15].  Histograms are based on an equally spaced bin-width hn where n 

denotes the sample size. If          is the estimate of the true density f(x), then the global 

accuracy of the estimate can be evaluated by the integrated mean square error that is defined 

by. 

(1) 

The IMSE is the sum of the integrated square bias and integrated variance, the bias being 

the difference between the true density and the estimate. The bin-width that minimizes the 

IMSE is required for accurate estimation of the true pdf f(x). Scott, [17], derived the 

asymptotically optimal choice of bin width, hn* as; 

 

 
(2) 

 
Since hn

*
 depends on the unknown pdf f(x), an estimate          of f(x) can be plugged into 

equation 2. For the normal distribution, the approximate optimal bin-width is; 

(3) 

 

where s is the sample standard deviation and n is the sample size. Freedman and Diaconis [18] 

suggested another bin width formula that can be applied to non-Gaussian data; 

(4) 

 

where IQR is the inter-quartile range of the data (Q3-Q1). Several other studies have focused 

on more quantitative and qualitative aspects of bin width selection [19]–[23]. Once the bin 

width is calculated, the histogram is defined as; 

nh
xf

1
)(ˆ = (number of Xi in the same bin as x)            (5) 

 
2.2 Kernel Estimators 

Kernel density estimators [24] are non-parametric methods used to estimate f(x) using the 

kernel estimator K (also called a window function) defined as; 

 

(6) 

 

where h is the bin width, also called as smoothing parameter or band width. Equation 6 can be 

considered as a pdf obtained by averaging the effect of a set of local functions K centered at 

each data point x.  

 

A variety of kernel functions with different mathematical properties have been reported 

[24]-[28]. Commonly used kernel functions include uniform, Gaussian, triangle, 

Epanechnikov, and biweight. Kernel functions are generally chosen based on the ease of 

computation and desired properties of the function.  
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For example, the Gaussian kernel is used for its continuity and differentiability. The optimal 

bin width for the Gaussian kernel is obtained by minimizing the integrated mean square error 

(equation 1). 

(7) 

 

where ŝ is the estimate of standard deviation. The Gaussian kernel can be used for non-

Gaussian data, since the kernel is used only as a local weighting function [16]. 

 
3. Approach 

For in-situ monitoring over long durations, one can use the load measurements obtained in the 

past or the data monitored over initial few periods to obtain the estimate of sample size and 

standard deviation. The relations provided in equation (3) and (7) are then used for bin width 

calculations. Once the bin-widths are calculated, the data for the subsequent time periods is 

stored directly in the bins. At the end of the monitoring period, the bin-widths and frequency 

is used in conjunction with equations (5) and (6) to obtain the probability distributions. These 

distributions are then used for damage assessment and prognostics (see Figure 2).   

 

 

Fig. 2: Method for estimating probability density using binned load data  

 

The load parameters obtained during monitoring depend on the usage and environmental 

conditions during the monitoring period. Thus, depending on usage conditions, there could be 

differences between the estimated and actual values of sample size and standard deviation. 

These differences can lead to inaccuracies in the subsequent density estimation process. One 

approach to overcome this problem is by recording the actual values of standard deviation and 

sample size during monitoring and using these values for density estimation. One can update 

the value of standard deviation every time a data point is added to the bins and also keep a 

track on the sample size. The advantage of continuously updating the standard deviation is 
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that it does not require storing the complete data set. Optimal bin-widths can then be 

recalculated based on actual values of sample size and standard deviation to estimate the 

probability distribution (see Figure 2). 

 
4. PHM Implementation Case Study 

The use of the proposed binning and density estimation techniques with a PHM methodology 

were demonstrated on an electronic assembly. The remaining life of the electronic assembly is 

assessed by modeling the damage accumulation due to cumulative exposures to temperature 

variations (see Fig. 3).  

 

4.1 Experimental Setup 

An electronic assembly (Figure 3) was exposed to a completely irregular temperature profile 

for 120 days. During the testing, the temperatures on the assembly (board and components) 

were measured.  An example of the temperature profile measured in-situ for the first 20 days 

is shown in Fig. 4. The raw sensor data was processed using the Ordered Overall Range 

(OOR) and 3-parameter rainflow algorithm [29]. The OOR converted the irregular time-

temperature data into a sequence of peaks and valleys. This information was fed to rainflow 

cycle counting algorithm to count the number of cycles and extract the load parameters, 

namely the cyclic mean, the range, and the ramp time. 

 

Fig. 3: Experimental setup for PHM implementation on electronic assembly 
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Fig. 4: Illustration of temperatures measured on the board  

 

Based on the output from the rainflow cycle counting, the distributions of load parameters 

were obtained. These distributions were then sampled in a Monte Carlo simulation of a 

damage model for the solder joint interconnect of the electronic components on the assembly. 

The damage model used contains all the first order parameters influencing the shear fatigue 

life of solder joints and come from the fundamental understanding of the response of surface 

mount solder joints to cyclically accumulating fatigue damage resulting from shear 

displacement due to thermal expansion mismatches between the components and the substrate. 

The Monte Carlo simulation provided the distribution of damage fractions. The damage 

fractions due to each exposure were then accumulated linearly using Miner’s hypothesis [6]. A 

damage fraction equal to 1 indicates failure or end of life of the product being monitored.  

 

 Along with the temperature, the daisy chain resistance (actual electrical performance) of 

the solder interconnects was measured in-situ. The failure criteria for the solder joints was 

based on IPC standard IPC-SM 785, that states that failure manifests itself in the form of 

resistance spikes of short durations >300 Ω and failure is defined as the first interruption of 

electrical continuity that is confirmed by 9 additional interruptions with an additional 10% of 

cycle life.  The actual (measured) failure of the solder joint was then compared with the 

prediction made using the PHM methodology. 

4.2 Assessment of Binning Techniques 

The rest of the discussion will focus only on cyclic Tmean, since the procedure used for binning 

and the result obtained are similar for all load parameters. For the first five days of the 

experiment, the cyclic Tmean data was extracted and stored without any binning. The average 

samples size (n), standard deviation (s), and inter-quartile range (IQR) for each load parameter 

was then calculated (see Table 1). These values were used as estimates of s, n, and IQR in 

equations (3), (4), and (7) to calculate the optimal bin widths for both histograms and kernels. 

For the histograms, the optimal bin widths obtained from equations (3) and (4) were within +/- 

5%. This is in agreement with results reported in the literature [16].  
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After the fifth day, the load parameters were extracted and stored in the bins calculated from 

the five day estimate. The bin frequencies were downloaded and distributions of load 

parameters were derived using histograms (see equation 5) and kernel functions (see equation 

6). The percentage of data reduction due to use of the bins was measured. The ability of 

histograms and kernel functions (using binned data) to represent the complete data set was 

assessed by comparing the histograms and kernel plots with the parametric distributions that 

were best fitted to the complete data set. 

 

Table 1. Estimate of parameters used for the bin width calculation 

Day Sample 

size (n) 

Inter-quartile 

range (IQR) 

Standard 

deviation (s) 

1 97 110.77 59.10 

2 80 131.20 66.70 

3 72 101.81 60.94 

4 80 36.63 48.89 

5 90 135.96 68.68 

Average 84 103.27 60.68 

 
5. Results and Discussion 

The best fitting distribution for the complete data set of Tmean values obtained on day 6 was 

found to be a normal distribution (see Fig. 5). The distribution obtained using histogram 

(equation 5), based on data binned as per equation 3, is shown in Fig. 5. The solid dark line in 

the figure shows the distribution of Tmean values obtained from binned data and using the 

Gaussian kernel. It is observed that the true shape of the distribution obtained from the data is 

bi-modal, which is accurately represented by the kernel and histogram. This bi-modal nature 

of Tmean values was hidden by the smooth normal distribution.  

 

When the distributions were used in the Monte Carlo simulation model for damage 

assessment, the samples of Tmean values drawn from the kernel resulted in more accurate 

estimates of damage, since the samples were drawn from a distribution that accurately 

represented the measured data. In comparison to the histogram, the kernel density estimate is 

smoother. Hence during random sampling, more number of distinct samples were drawn from 

the kernel distribution as compared to the histogram. This further improved the accuracy of 

the damage distribution resulting from the Monte Carlo.  

 

In terms of data reduction, the use of kernels and histograms resulted in 78% and 85% 

less data per day compared to using the complete monitored data set. Assuming the same 

amount of data reduction, the sensor system with binning can now be used uninterrupted for 

6.6 more days with histogram and 4.7 more day with kernels to consume the same storage 
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space without binning. Similar results were obtained when the analysis was conducted from 

day seven onwards. This clearly demonstrates the importance of these methods to enable 

uninterrupted monitoring at low power and memory consumption. 

 
The sensitivity of the kernel densities to the difference between estimated and actual 

standard deviation and sample size were investigated by analyzing the experimental data for 

different time periods. For example, Fig. 6 compares three density estimates estimated using 

Gaussian kernel; distribution (1) is obtained using the complete data set and actual values of 

standard deviation and sample size for calculating is hopt. Distribution (2) is based on binned 

data and estimated values standard deviation and sample size for calculating is hopt. 

Distribution (3) is obtained from binned data and updated values standard deviation and 

sample size using the approach in Figure 2. In this example, the difference between the actual 

and estimated s was 38%. It is observed that the distribution (3) using updated value is a better 

estimate of the actual distribution (1).  Similar results were obtained for different sets of data 

collected in the study. 

 

 
Fig. 5: Comparison of density estimates for Tmean values of day 6 

 

6. Conclusions 

For prognostics and health management, the application of optimal binning and density 

estimation using histogram and kernel estimators for condensed storage of load histories, can 

significantly improve the ability of the sensor nodes to monitor for extended durations without 

interruptions and conserve memory and power. It was found that optimal bin widths can be 

calculated a-priori based on estimates of sample size and standard deviation of representative 

data sets. In using the binned data for representing the entire data set, kernel methods provided 

a better estimate of the probability density compared to histograms. It was shown that the 
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difference between the estimated and actual bin-width and the resulting error in density 

estimation can be minimized by recording the sample size and standard deviation during in-

situ monitoring, and using the recorded (true) values for density estimation.  

 

 

Fig. 6: Comparison of distributions obtained from estimated versus actual parameters  
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